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Abstract- Projection depth and its associated estimators, namely, Stahel-Donoho (S-D) estimator, Projection 
Trimmed Mean (PTM), Projection depth Contours (PC) and Projection Median (PM) have been studied in 
bivariate data. An attempt has been made to compute projection depth and its associated estimators by using the 
pair of location and scale estimator (Mean, Standard Deviation (SD)), (Median, Median Absolute Deviation 
(MAD)), and (Median, Qn).The efficiency of these estimators is carried out by computing average 
misclassification error in discriminant analysis by using the projection depth based Stahel-Donohoestimator 
under real and simulating environment. The study concluded that (Median, MAD) and (Median, Qn) based 
projection depth estimators performs well when compared with (Mean, SD). 

 

Index Terms- Projection depth and its associated estimators; Robust discrimination analysis. 

 

1. INTRODUCTION 

Data depth is a concept which plays an 

important role in many notable fields of 

statistics,namely; data exploration, ordering, 

asymptotic distributions and robust estimation(Liu et 

al. 1999). The essence of the depth function in 

multivariate analyses is to measure degree of 

centrality of a point relative to a data set or to a 

probability distribution. Many robust procedures have 

been developed to compute the data depth. The data 

depth based approach has been received much 

attention now-a-days. Numerous depth notations have 

been proposed during the last few decades, 

namely,half space depth (Tukey 1975), simplicial 

depth (Liu 1990), regression depth (Rousseeuw and 

Hubert 1999) and projection depth (Liu 1992; Zuo and 

Serfling 2000; Zuo 2003). 

The Projection Depth(PD) is very favorable 

to the robust statistics when compared with the other 

depth notations.It is due to the reason that all the 

desirable properties of the general statistical depth 

function defined in Zuo and Serfling (2000), namely, 

affine invariance, maximality at center, monotonicity 

relative to deepest point, and vanishing at infinity are 

satisfied by the PD.  

The main objective of this paper is to 

estimate the associated estimators such as Stahel-

Donohoestimator, projection trimmed mean, 

projection depth contours and projection median for 

bivariate data based on various pair of projection 

depth procedures.Further, the performance of the pairs 

has been studied under various levels of 

contaminations with the help of Stahel-

Donohoestimator, by computing average 

misclassification probabilities in the context of robust  

 

 

linear discriminant analysis in Hubert and Van 

Driessen (2014). 

The rest of the paper is organized as follows. 

Section 2 describes the methodology of projection 

depth and its associated estimators. Section 3 

discussesrobust linear discriminant analysis. Section 4 

examines the performance and critically compares the 

three pairs of projection depth procedures.  Section 5 

presents results obtained in real and simulation studyin 

the context of robust discriminate analysis.The paper 

ends with conclusion in the last section.  

2. PROJECTION DEPTH AND ITS 

ASSOCIATED ESTIMATORS    

Zuo (2003) introduced a Projection-based 

depth functions, which has the highest breakdown 

point among all the existing affine equivariant 

multivariate location estimators and associated 

medians. It can induce a lot of favorable estimators, 

such as Stahel-Donohoestimator and depth weighted 

means for multivariate data (Zuo et al. 2004; Zuo 

2006).Further, Zuo (2006) studied multidimensional 

trimming based on projection depth. Exact 

computation of bivariate projection depth and Stahel-

Donoho estimator, with a proper choice of  ,  are 

formulated and studied by Zuo and Lai (2011).  Liu 

and Zuo (2014) studied computational aspects of 

projection depth and its associated estimators.The 

brief description of theory of projection depth is as 

follows.
 

Let µ (.) and σ (.)be univariate location and 

scale measures, respectively. Then the outlyingness of 
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a point Rx    with respect to the distribution 

functionF of Xdefinedby (Liu 1992, Zuo 2003). 
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then define   0,, FxuQ , which denotes the 

projection of xonto the unit vector u. Note that the 

most popular outlying function has the robust choice 

of µ andσ be theMedian and MAD. Here, the pair 

(med, Qn), where med and Qnis considered as location 

and scale estimator of (µ(F), σ(F)) for a given sample 

X
n
 = {X1, X2,…,Xn} from X.Let Fn be the 

corresponding distribution, then the projection depth 

and its associated estimators depend on the robust 

choice of (Med, Qn), Q(x,u,X
n
) in (1) with respect to u. 
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Whereu
T
denotes the projection ofxonto the unit vector 

u and  XuXuXuXu n
TTTnT ,...,, 21 . LetX 

(1) ≤ X (2) ≤ … ≤ X(n) denote the order statistics 

corresponding to the univariate random variablesZn. 
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wheredis a constant factor and ,4/
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  1
2

 nh  is roughly half the number of 

observations. That is, 








2

n
is the interpoint distances 

ofk
th
 order statistics. 

The main function of the projection depth is to be 

responsible for a center-outward ordering for the 

bivariate data. Based on this ordering, one can make 

the projection depth contours, which can provide us 

with a bivariate data of the quantile of an underlying 

distribution (Halin et al. 2010). 

It’s defined as 

 ,),(:),(   FxPDRxFPR P
            (4) 

where ),(sup0 * FxPD

R
Px

   with α
th

 

Projection depth Region (DR).Then the corresponding 

α
th

Projection Depth Contour can be distinct as the 

boundary ofPDR (α,F)under some conditions (Zuo 

2003) is given by 

 .),(:),(   FxPDRxFPC P
           (5) 

The innermost depth contour, which is a singleton in 

many situations, is the Projection depth Median (PM) 

of Zuo (2003) 

.),()( * FPCFPM 
 

Based on the projection depth regionPR (α, F),one can 

define theα
th

 Projectiondepth Trimmed Mean (PTM), 

(Zuo (2006)) as 
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wherew1(.)is a suitable (bound) weight function on [0, 

1]. PTM is highly robustness and efficiency α=0 and 

the famous degenerates PTM into the Stahel-Donoho 

location estimators (Stahel 1981; Donoho and Gasko 

1992), i.e.theProjection Weighted Mean (PWM) and 

Projection Weighted Scatter (PWS) 
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wherePWM(F) and PWS(F)is the aforementioned 

Stahel-Donoho location and scatter estimator,w2(.) 

denotes the weight function on [0, 1] based on 

projection depth outlying function (µ(F),Qn(F))as 

respectively.Note that the projection depth and its 
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associated estimators such asPTM (F), PWM 

(F)andPWS (F)to be well defined, certain monotony 

conditions are required as follows: 

    ,0),(  dxFFxPDwi  

      .2,1,, idxFFxPDwx i
i

 

with a finite sample  XXXX n
n ,...,, 21  from X 

andFn be the corresponding empirical distribution of F 

based onX
n
. By simply replacing F byFn

in projection 

depth and its related estimators can obtain their sample 

version.  

3. ROBUST DISCRIMINANT ANALYSIS 

Let p be the variable with nobservations that 

are sampled froml different populations π1,…,πl.  The 

discriminant analysis settingis in the membership of 

each observation with respect to the populations, i.e., 

the data points intolgroups with n1,n2,…,nl  

observations. Trivially,  


l

j
j nn

1

. Therefore, then 

the observations by .,...,1;,...,1; niljx jij 

Based on the initial estimates µj,0 and Sj,0 are computed 

for each observation xijof group jand its (preliminary) 

robust distance is given by 

 

The assign weight 1 to xiif 

.2
975.0,

0
ijRD  


 

The reweighted projection depth estimator 

for group j is then obtained as the medianPWMjand the 

scatter matrixPWSjof those observations of group j 

with weight 1. It is shown that this reweighting step 

increases the finite-sample efficiency of the projection 

depth estimator considerably, whereas the breakdown 

value remains the same. These robust estimates of 

location and scatter now allow us to flag the outliers in 

the data, and to obtain more robust estimates of the 

membership probabilities. First compute the robust 

distance for each observation xijfrom group j, 

    .10, 0,0, PWMxPWSPWM jxijRD jijj

t
ij 

 

One can consideran observation xijis an outlier if and 

only if 

.2
975.0,pijRD   

Further, the projection depth estimatesPWMjand 

PWSjare obtained for each group, and then the 

individual covariance matrixes are pooled together for 

further computation. 

Letnjdenote the number of non-outliers in group j, and




l

j
jnn

1

, then the robustly estimate the 

membership probabilities as 

 .
n

n
P
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j 

 

Note that the usual estimates implicitly 

assume that all the observations have been correctly 

assigned to their group. It is however also possible that 

typographical or other error has occurred when the 

group numbers were recorded. The observations that 

are accidently put in the wrong group will then 

probably show up as outliers in that group, and so they 

will not influence the estimates of the membership 

probabilities. Of course, if one is sure that this kind of 

error is not present in the data, one can still use the 

relative frequencies based on all the observations. 

4. RESULTS AND DISCUSSION 

4.1.  Simulation (Computing Projection Depth 

values) 

A simulation study is performed to compare 

the efficiency of the various notions of projection 

depth procedures. To illustrate this 25 sample points 

are simulated from multivariate normal distribution 

with the mean vector µ= (1,1) and the covariance 

matrix I2  

The obtained finite number of optimal 

direction vectors under the exact projection depth 

values of the sample points with respect to the data 

cloud χ
n
 is reported in Table 1 and is given in 

Appendix. For the sake of comparison, it is also 

computed the approximate projection depth values 

based on 5 × 10
4
 random direction vectors. It is 

observed from the table, the exact projection depth 

values are almost greater than the random projection 

depth values by considering all the pairs. Further it is 

noted that the exact projection depth values is greater 

than the random projection depth values produced by 

the pair (Mean, SD). It is concluded that the pairs 

(Median, MAD) and (Median, Qn) produces similar 

depth values under exact and random projections. 

The projection depth size plots under exact 

and random projections are displayed in the figure 1.It 

is noted that the size of the plotted points is increases 

when the depth values increases. That is, the plotted 

pointsare in bigger size when the depth value is large. 

Again, thedepth central points are largerelative to 

those on the skirts. This is a confirmation that the 

    .10,0
0,

jijj

t

ij xSjxijRD 
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projection depth provides a center-outward ordering 

for the given data cloud. 

 

 Mean,SD Median, MAD Median, Qn 

Exact 

projectio

ns 

   

Random 

projectio

ns 

   

Figure 1Projection Depth-Size Plots  

4.2. Simulation (Computing Projection-based 

depth and its associated estimators) 

In order to compare the projection-based 

depth and its associated estimators, 100 datapoints 

were generated from the normal distribution with the 

mean vector µ=(1, 1) and covariance matrix 











10

01
. 

Further, the location and scale estimates for the 

generated data is computed which are as follows:µ = 

(1.1271,1.0392),Med = (1.1476,1.0706) and 

















1041.11097.0

1097.00481.1
which are mean, median and 

covariance respectively. The estimated Projection 

based Median, Weighted Median and Trimmed 

Median under the three pairs (Mean, SD), (Median, 

MAD) and (Median, Qn) are summarized in table 2 

and 3. 

Further, the study was extended with 

contamination. The data generated with µ = (-4, -4), ∑ 

= 4IP, and the level of contamination 5%, 10% and 

15% were considered, and then the same experiment 

was performed. For the contaminated data, the 

computed location and scatter values mean, median 

and covariance are µ = (-0.5293, -0.7022), med = (-

0.0333,-0.3286) and 









2617.45105.2

5105.21224.4
 

respectively.The estimated Projection based Median, 

Weighted Median and Trimmed Median under the 

three pairs (Mean, SD), (Median, MAD) and (Median, 

Qn) are also summarized in table 2 and 3. 

Table2Estimated Projection Depth Location 

Estimators (with/without contamination) 

Error 
Estimat

ors 

Projection Depth Procedures 

(Mean, SD) (Median, MAD) (Median, Qn) 

0.00 

PM (1.1271, 1.0392) (1.0807, 1.0724) (1.0830, 1.0661) 

PWM (1.1326, 1.0458) (1.1402, 1.0538) (1.1326, 1.0458) 

PTM (1.1463, 1.0520) (1.1329, 1.0589) (1.1463, 1.0520) 

0.05 

PM (0.9082,0.6899) (1.0198,0.8114) (1.0211,0.8138) 

PWM (1.0291,0.8099) (1.0458,0.8360) (1.0501,0.8346) 

PTM (1.0893,0.8661) (1.1041,0.8980) (1.2106,0.8844) 

0.10 

PM (1.1271,1.0392) (1.0825,1.0593) (1.0830,1.0661) 

PWM (1.1359,1.0366) (1.1322,1.0412) (1.1325,1.0457) 

PTM (1.1499,1.0432) (1.1261,1.0388) (1.1464,1.0519) 

0.15 

PM (0.3484,0.2410) (0.7592,0.5882) (0.8110,0.6337) 

PWM (0.6903,0.4843) (0.7928,0.5825) (0.8904,0.6602) 

PTM (0.8037,0.5591) (1.0345,0.7809) (1.1385,0.8555) 

Table3Estimated Projection depth weighted Scatter 

Estimators (with/withoutcontamination) 

Error 
Projection Depth Procedures 

(Mean, SD) (Median, MAD) (Median, Qn) 

0.00 










0.94240.0627-

-0.06270.9501
 











0.84830.0268-

-0.02680.9221
 











0.94240.0627-

-0.06270.9501
 

0.05 










3157.13062.0

3062.01877.1
 











1774.12550.0

2550.00857.1
 











2143.12219.0

2219.01133.1
 

0.10 














9526.00730.0

0730.09424.0
 















9279.00653.0

0653.09324.0
 















9431.00630.0

0630.09507.0
 

0.15 










4875.26544.1

6544.1 2.9177    
 











9967.11662.1

1662.11899.2
 











6890.17348.0

7348.07404.1
 

It is observed from the above tables, the 

estimated location and scatter values are close to the 
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actual value under the three pair of estimators when 

there is no contamination. Further, it is noted that the 

pair (Median, Qn) can tolerate certain amount of 

contamination,   specifically, one can see that the 

contamination level is 15%, the results get affected 

under the pairs (Mean, SD) and (Median, MAD) but 

not in the case of (Median, Qn).  It is concluded that, 

the impact of the outliers on(Median, Qn) are very 

limited.The estimated location points under the three 

pairs along with data points with/without 

contaminations are displayed in the form of scatter 

plots in Figure.2. Figures reveal that the ordinary 

mean is placed outside the bulk of the data points by a 

few outliers; while other projection depth based 

location estimators are positioned among the majority 

of the data. 

 

 (Mean,SD) (Median, MAD) (Median, Qn) 

e=0.00 

   

 

e=0.05 

 

 

 

 

   

e=0.10 

   

e=0.15 

   

Figure 2Projection Depth-Size Plots (PWM, PWS)
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The location and scatter estimators confirm high 

robustness of projection depth and its associated 

estimators (Zuo 2003, 2006).It is worthy to note that, 

during the computation of PWM, PTM and PWS; 

weight functionswi(.), i =1,2,used here as suggested by 

Zuo and Cui (2005). Further the projection depth 

contours applied to various projection-based depth 

procedures under various level of contaminations are 

display in figure 3 and is given in Appendix. The 

contours indicate a similarity in the structures of the 

projection depth procedures (Median, MAD) and 

(Median, Qn) which are both unlike the results of the 

procedure (Mean, SD). 

5. APPLICATIONS IN DISCRIMINANT 

ANALYSIS 

5.1. Real data 

This section presents the performance of 

projection depth based SDE in robust linear 

discriminant analysis by computing misclassification 

probabilities with three pairs of location and scatter 

approach. It is considered a data set with two groups 

(Johnson and Wichern (2009)). The data description is 

as follows: Two different groups: π1 is ridingmover 

owners and π2 is without riding movers to identify the 

best sales prospects. The owners or non-owners on the 

basis ofthe variables x1(income), x2(lot size), random 

sampleofsize n1(=12) current owners and n2(=12) 

current non-owners respectively. Discriminant 

analysis for these two groups is performed and 

computed misclassification probabilities under various 

projection depths based approaches and is given in 

table 4.  

Table 4Computed misclassification probabilities 

under various projection depth 

Procedures 
Misclassification Probabilities 

π1 π2 Average 

(Mean, SD) 0.1667 0.1667 0.1667 

(Median, MAD) 0.2083 0.2083 0.2083 

(Median, Qn) 0.1667 0.1667 0.1667 

The estimated average misclassification probabilities 

are almost same except the procedure(Median, MAD).  

5.2. Simulation study 

This section presents the results obtained 

under various projection depth based approaches 

under simulating environment with/without 

contaminations (Location and Scale). In this context, 

two groups (g=2) with two variables (p=2) are 

considered to simulate the data. The data were 

generated under thenormal distribution which hasthe 

covariance matrices ∑1=IP and ∑2= 2IP with means µ1= 

(1, 1) and µ2= (5, 5)under sample sizes of 50 and 100. 

The various levels of contaminations such as 5%, 

10%, 15%, 20%, 25%, 30%, 35% and 40% were 

considered in all cases. The obtained results with the 

contamination levels 0%, 5%, 10% and 15% are same 

and the results based on the remaining contaminations 

are displayed in the table 5. 

Table5Computed misclassification probabilities under various projection depths with contaminations 

n1=n2=50 n1=n2=100 

Eror (Mean, SD) (Median, MAD) (Median, Qn) (Mean, SD) (Median, MAD) (Median, Qn) 

0.20 0.0337 0.0227 0.0118 0.0168 0.0113 0.0058 

0.25 0.2083 0.1429 0.1250 0.0824 0.0718 0.0058 

0.30 0.4667 0.4731 0.4302 0.1746 0.1649 0.0120 

0.35 0.4845 0.4792 0.4681 0.3109 0.3109 0.1236 

0.40 0.4896 0.5000 0.4792 0.3827 0.3827 0.2065 

On comparing the average probability of 

misclassification values in the above table, it is 

evident that the procedures (Median, MAD) and 

(Median, Qn) produces less when compared with 

(Mean,SD). Also, it is observed that when sample size 

increases the misclassification probabilities decreased 

under all the procedures. It is concluded that the 

procedure (Median, Qn) performs better than the other 

two procedures. It shows that it is superior to the other 

two procedures when the level of contamination 

increases.  

 

6. CONCLUSION 

Location and scatter estimator play vital role 

in almost all statistical data analyses. The conventional 

estimates, sample mean vector and covariance matrix 

are very sensitive when the outlying observations in 

the data. In order to obtain the reliable location and 

scatter estimate, data depth approaches attract the 

researchers now-a-days. This paper proposes a 

projection based data depth approach to compute 

location and scatter estimate, namely (Median, Qn). 

Further the superiority of the proposed estimator has 

been studied under real and simulation by applying it 

in discirminant analysis by computing the 

misclassification probabilities with various other 

projection based depth approaches (Mean, SD) and 
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(Median, MAD).  The simulation study shows that the 

projection depth based on the mean and standard 

deviation fails to produce reliable results when 

compared with the other projection depth procedures. 

It is noted that (Median, MAD) and (Median, Qn) 

performs well over the (Mean, SD).  The study 

concluded that the proposed projection depth 

procedure (Median,Qn)shows that its superiority over 

the other procedures (Mean, SD) and (Median, MAD), 

in the context of tolerance level of contaminations and 

misclassification rate.  
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Appendix A. 

Table 1 Computed Exact and Random Projection 

Depth Values 

Ind

ex 

ExPDV RndPDV (50000) 

(Mea

n, 

SD) 

(Med

ian, 

MAD

) 

(Med

ian, 

Qn) 

(Mea

n, 

SD) 

(Med

ian, 

MAD

) 

(Med

ian, 

Qn) 

1 
2.157

455 

0.192

624 

0.295

180 

0.316

700 

0.192

652 

0.192

629 

2 
0.325

019 

0.500

000 

0.624

752 

0.754

699 

0.500

000 

0.500

000 

3 
1.381

532 

0.207

411 

0.366

216 

0.419

877 

0.207

424 

0.207

452 

4 
1.427

049 

0.269

415 

0.413

776 

0.411

965 

0.269

420 

0.269

431 

5 0.756 0.448 0.593 0.569 0.448 0.448
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764 481 490 181 493 500 

6 
1.110

552 

0.232

646 

0.403

110 

0.473

809 

0.232

665 

0.232

688 

7 
0.578

716 

0.468

108 

0.627

823 

0.633

426 

0.468

113 

0.468

110 

8 
2.088

440 

0.210

192 

0.330

685 

0.323

738 

0.210

192 

0.210

194 

9 
1.365

669 

0.266

899 

0.389

780 

0.422

712 

0.266

935 

0.266

904 

10 
1.849

254 

0.231

068 

0.370

514 

0.350

968 

0.231

075 

0.231

072 

11 
0.711

800 

0.441

931 

0.577

139 

0.584

118 

0.441

932 

0.441

936 

12 
0.968

409 

0.375

329 

0.507

785 

0.508

010 

0.375

332 

0.375

342 

13 
0.664

505 

0.431

879 

0.595

967 

0.600

772 

0.431

887 

0.431

883 

14 
0.654

543 

0.323

455 

0.512

907 

0.604

381 

0.323

470 

0.323

503 

15 
2.226

154 

0.162

738 

0.287

439 

0.309

962 

0.162

756 

0.162

757 

16 
1.894

023 

0.159

594 

0.296

955 

0.345

536 

0.159

607 

0.159

621 

17 
1.177

729 

0.316

469 

0.442

848 

0.459

100 

0.316

471 

0.316

484 

18 
0.438

135 

0.523

140 

0.677

843 

0.695

193 

0.523

145 

0.523

143 

19 
1.925

905 

0.211

008 

0.364

037 

0.341

707 

0.211

022 

0.211

023 

20 
1.534

453 

0.245

126 

0.363

464 

0.394

543 

0.245

160 

0.245

131 

21 
1.860

163 

0.165

077 

0.306

217 

0.349

630 

0.165

093 

0.165

103 

22 
1.083

207 

0.302

623 

0.431

504 

0.480

021 

0.302

626 

0.302

646 

23 
0.647

058 

0.395

693 

0.534

016 

0.607

130 

0.395

696 

0.395

718 

24 
1.874

344 

0.228

289 

0.355

446 

0.347

905 

0.228

299 

0.228

294 

25 
0.657

895 

0.500

000 

0.637

665 

0.603

174 

0.500

000 

0.500

000 
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Figure 3Projection Depth Contour Plots under various procedures with level of contaminations 

 


